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Human cancers are biologically and morphologically heteroge-
neous. A variety of clonal populations emerge within these
neoplasms and their interaction leads to complex spatiotempo-
ral dynamics during tumor growth. We studied the reshaping
of metabolic activity in human cancers by means of continuous
and discrete mathematical models and matched the results to
positron emission tomography (PET) imaging data. Our models
revealed that the location of increasingly active proliferative cel-
lular spots progressively drifted from the center of the tumor
to the periphery, as a result of the competition between gradu-
ally more aggressive phenotypes. This computational finding led
to the development of a metric, normalized distance from 18F-
fluorodeoxyglucose (18F-FDG) hotspot to centroid (NHOC), based
on the separation from the location of the activity (prolifera-
tion) hotspot to the tumor centroid. The NHOC metric can be
computed for patients using 18F-FDG PET–computed tomography
(PET/CT) images where the voxel of maximum uptake (standard-
ized uptake value [SUV]max) is taken as the activity hotspot. Two
datasets of 18F-FDG PET/CT images were collected, one from 61
breast cancer patients and another from 161 non–small-cell lung
cancer patients. In both cohorts, survival analyses were carried
out for the NHOC and for other classical PET/CT-based biomarkers,
finding that the former had a high prognostic value, outperform-
ing the latter. In summary, our work offers additional insights into
the evolutionary mechanisms behind tumor progression, provides
a different PET/CT-based biomarker, and reveals that an activity
hotspot closer to the tumor periphery is associated to a worst
patient outcome.
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Human cancers are genetically and morphologically heteroge-
neous (1, 2). This is generally attributed to the evolutionary

dynamics of different clonal cell populations coexisting in the
tumor ecosystem and undergoing stochastic branching processes
over time (3–5). Successively acquired driver mutations, somatic
alterations, and nongenetic modifications may confer increased
fitness on certain cancer cell phenotypes, which subsequently
outcompete those that do not experience such selection benefits
within their microenvironment (4, 6, 7). Cells with specific advan-
tageous traits may not show uniform spatial distribution across
the tumor, particularly in large tumors. In fact, trade-offs exist
that preclude the occurrence of optimal phenotypes, as exempli-
fied by the hallmarks of cancer (8), and thus only local selection
is expected to take place. This produces the spatial phenotypic
diversity found in primary tumors and distant metastases (9).

Sustained metabolic reorganization during tumor progression,
due to bioenergetically very demanding processes such as rapid
proliferation, is a major hallmark of cancer (8, 10). This gives rise
to a global metabolic plasticity and fitness optimization that con-
fers evolutionary advantages under specific selective pressures,
such as hypoxia (11). Positron emission tomography (PET) has
been proposed as a way to assess macroscopic tumor hetero-

geneity in human patients (12). The technique is used in clinical
practice with the radiotracer 18F-fluorodeoxyglucose (18F-FDG)
(13), which is an analog of glucose and thus a marker of glycoly-
sis (14). The altered tumor metabolism leads to an up-regulation
of glycolysis and an increase in glucose consumption (15). This
happens even in the presence of oxygen and is referred to as the
Warburg effect. Even though this process is energetically ineffi-
cient (16), cancer cells may find it beneficial to satisfy the biomass
demands required by their high proliferation rates (17). This is
confirmed by studies that relate the uptake of 18F-FDG in PET
images to proliferation markers (18, 19). Therefore, the spatial
map of glucose consumption provided by 18F-FDG PET images,
as measured at each voxel by the standardized uptake value
(SUV), is of great utility in portraying the spatial distribution of
proliferation within the tumor.

The degree and impact of intertumor diversity and intratumor
heterogeneity in patients has driven the need for quantitative
frameworks to account for this variability (20). We consid-
ered how the metabolic activity might be distributed inside the
tumor and how that information could be related to 18F-FDG
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PET images. Specifically, we looked at whether the location of
prominent proliferation hotspots, as measured by the voxel of
maximum radiotracer uptake (SUVmax), could convey informa-
tion about patient prognosis. We did this by analyzing how these
spots changed over time and space within the tumor in silico
using two mathematical models of different levels of complexity.
The implications of these results, embodied in the definition of a
prognostic biomarker named NHOC, were tested on datasets of
breast and lung cancer patients.

Results
Phenotype Variability Supports a Drift of the Highest Metabolic
Activity toward the Tumor Boundary. To describe the emergence
of metabolic heterogeneity, we studied in silico a simple biolog-
ical scenario assuming the tumor to be composed of a clonal
population of cells that can migrate, proliferate until the physical
space is full, and die. To account for phenotypic heterogeneity,
a transition probability that a cell proliferating at a rate ρ could
increase or decrease its rate was introduced. The mathematical
model used was a continuous nonlocal Fisher–Kolmogorov-type
equation (21) which considered the tumor cell population to be
structured both by a spatial position vector x∈Ω⊂R3, inside
a domain Ω, and a proliferation rate ρ∈ [0, ρm], where ρm is a
maximum proliferation rate. Let u = u(x, ρ, t) denote the cell
density function, such that u(x, ρ, t) d3x dρ represents the num-
ber of tumor cells that, at time t , have a proliferation rate ρ at
point x. We modeled the dynamics of u(x, ρ, t) via the following
migration–proliferation integro-differential equation:

∂u

∂t
=Dc∇2u +Dρ

∂2u

∂ρ2

+ (ρ−µ)

(
1− 1

K

∫ ρm

0

u(x, ρ′, t) dρ′
)
u(x, ρ, t). [1]

The first term accounts for cell migration with a diffusion
constant Dc> 0. The second term captures the effect of non-
genetic instability, mediated by fluctuations in the proliferation

phenotype occurring with a diffusion constant Dρ> 0. Note that
the proliferation phenotype is a hallmark in tumors resulting
from alterations in growth regulation (8). The third term com-
prises two main factors. The first one includes the proliferation
rate ρ minus a constant death rate µ> 0; those cells having a
larger factor ρ−µ will tend to display a fitness advantage unless
exogenous mechanisms (e.g., cytotoxic drugs targeting actively
dividing cells) exert a negative selection effect on the pheno-
type. The second factor consists of a nonlocal logistic form with
a carrying capacity K > 0. This factor represents the interplay
between intratumor subpopulations with different proliferations
competing for the available space.

A number of quantities are useful for summarizing the infor-
mation contained in Eq. 1. The first one is the marginal cell
density n(x, t) =

∫ ρm
0

u(x, ρ, t) dρ, with typical radially symmet-
ric profiles as shown in Fig. 1A. The second one is the prolifer-
ation density M(x, t) (Eq. 9 in Materials and Methods), which
gives the spatiotemporal proliferation map and allows the tumor
regions with high metabolic activity to be identified. Fig. 1B
depicts M(x, t)/K and shows how the location of the highest
activity shifts from the tumor centroid toward the boundary as it
grows in silico. This observed displacement, which was found to
be linear with time, was quantified using two metrics. The first
one was the distance from the highest activity, corresponding to
the point of maximum proliferation, to the tumor centroid. We
named this metric the distance from the metabolic hotspot to the
tumor centroid (HOC). To make HOC independent of size, so
that it can be compared among different tumors, we conceived
a second metric, normalized HOC (NHOC), defined as the ratio
between HOC and the mean metabolic radius of the tumor, Rmet

(Fig. 1C and Eq. 10 in Materials and Methods). Simulations of Eq.
1 showed that, during the early stages of the natural history of the
tumor, the metric HOC was found to be zero or very small. How-
ever, as the inner regions were filled with cells, HOC increased
linearly with time (Fig. 1D). NHOC changed steadily from zero
to one, since the maximum proliferation spot can only occur
between the tumor center and its edge, indicating that this spot

A

B

C

D

Fig. 1. Nonlocal Fisher–Kolmogorov model 1 predicts a drift of the highest metabolic activity from the tumor centroid to the periphery with time. (A)
Normalized cell density n(x, tj)/K at tj= 6, 12, 18, 24, 30, and 36 mo (from left to right) for a radially symmetric tumor. (B) Pseudocolor plots of the
normalized spatiotemporal proliferation densityM(x, t) and profiles (Inset) ofM(x, tj) calculated at tj= 6, 12, 18, 24, 30, and 36 mo. (C) Mean metabolic
radius Rmet(t) and (Inset) average proliferation rate ρa(t). (D) Variation over time of the distance from the tumor centroid to the hotspot of proliferation
(HOC) and (Inset) normalized HOC by the mean metabolic radius (NHOC). Simulation parameters are listed in Materials and Methods.
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will move from the central regions of the tumor to its boundaries
(Fig. 1 D, Inset).

The simulations of Eq. 1 revealed other noteworthy effects.
First, the amplitude of the maximum activity in M(x, t) grew
with time, meaning that tumors at later stages of their evolution-
ary history show increasing hotspot activity values. This was in
line with the frequently observed association between SUVmax
and prognosis for different tumor histologies (22, 23). Second,
the distribution of the proliferation rates displayed sustained
growth toward higher values of ρ, reflected in the average pro-
liferation rate ρa (Fig. 1 C, Inset). The growth of the tumor pro-
liferation rate with time (size) has been experimentally observed
in other studies (24).

Genotype Evolutionary Dynamics Support the Drift of Tumor High-
est Metabolic Activity toward the Boundary. We next resorted to
a more complex and realistic biological scenario accounting for
genotypic alterations. We did this by considering a stochas-
tic discrete model based on fundamental cell features. At the
cellular level, cancer cells can be characterized by four deregu-
lated processes: proliferation, migration, mutation, and death.
These processes can be easily implemented as rules in a dis-
crete mathematical model to mimic the main characteristics of
the real system, with the drawback of facing high computational
cost, especially when simulating clinically relevant volumes (25).
To overcome this problem, we developed a hybrid stochastic
mesoscale model of tumor growth that allowed clinically rele-
vant tumor sizes to be simulated while retaining the basic cancer
hallmarks (24).

The model was parameterized for two of the most promi-
nent cancer types, namely breast and lung cancer (non–small-cell
lung carcinoma [NSCLC]). A summary of our available data
can be seen in Table 1. Mutational landscapes were constructed
based on a simplification of their known mutational spectra.
Alterations in EGFR and ALK, which are strongly associated
with nonsquamous lung adenocarcinoma, were considered to
model NSCLC, while driver mutations in PIK3CA and TP53
were considered for breast cancer (26–29). Therefore, the muta-
tional tree in both types of tumors simulated had two possible
altered genes, leading to four possible combinations or “geno-
types” that define four different clonal populations. Basal rates
associated a characteristic time to each basic cell process, and
mutation weights determined how these basal rates were affected
once a given alteration was acquired. Mutation weights were
taken to contribute equally for all alterations, and their effect
was cumulative, so that a cell carrying two alterations simul-
taneously would perform basic processes with a double advan-
tage. Thus, the stochastic mesoscopic model provided a richer
scenario to explore intratumoral heterogeneity during tumor
growth.

We ran 100 simulations of breast cancer and 100 simulations
of NSCLC with random parameters uniformly sampled from the

ranges in Tables 1 and 2 (Materials and Methods). Cell number,
activity (number of newborn cells), and most abundant clonal
population were calculated for each voxel and time step (Fig. 2).
Tumor volumes were measured from the number of voxels con-
taining more than a threshold number of cells Nt (Table 1),
and the mean spherical radii (MSR) were computed from
these.

As cells mutated in silico, new clonal populations emerged
with higher, more advantageous migration and proliferation
rates. These new clones increased their relative abundance in
the tumor, eventually becoming fixed in the system. As the
tumors grew larger, cell division occurred preferentially at the
tumor periphery. This was as expected, since inner voxels became
progressively filled with cells that prevented them from prolifer-
ating. Voxels where the most aggressive clonal population was
more abundant were associated with hotspots of maximum pro-
liferation. Therefore, evolution was pushed toward the tumor
edge: Cells with higher fitness (especially those having higher
proliferation rates) appeared farther from the tumor center
as they grew. At each time step, the maximum proliferation
spot was identified as the voxel with the largest number of cell
births, and its distance to the tumor centroid (HOC) was cal-
culated. Fig. 2 D and E shows a monotonic increase of HOC
with time for both histologies. Normalizing with respect to the
MSR to get the NHOC showed that the point of maximum
proliferation was displaced toward the boundary (Fig. 2 F and
G) in all of the simulations performed. The only difference
between simulations was the time that the maximum prolifera-
tion spot took to reach the edge. Thus, NHOC was predicted
to be a robust property related to the evolutionary state of the
disease.

PET Imaging Data Confirm Evolutionary Dynamics of the Maximum
Metabolic Activity Validating Related Biomarkers. The computa-
tional results suggested that NHOC might contain meaningful
prognostic information. In the clinical setting, the metabolic
activity distribution of the tumor can be evaluated by means
of 18F-FDG PET, which reflects the biological processes taking
place at a lower level (30) and is frequently used on newly diag-
nosed breast cancer and NSCLC patients. To confirm or refute
the theoretical predictions, we performed a study on our patient
cohort (Materials and Methods). For each patient, the tumor
was delineated in the images and the locations of centroids and
SUVmax were obtained computationally from the segmented dis-
tribution, as detailed in Materials and Methods. The metabolic
tumor volume (MTV), total lesion glycolysis (TLG) (integral of
the SUV distribution over the volume), and NHOC metrics were
calculated for all tumors for both histologies. Two typical exam-
ples of 18F-FDG PET images from breast cancer patients are
shown in Fig. 3 A and B, respectively. Small values of NHOC,
with SUVmax close to the tumor centroid as in Fig. 3 B and I, were
expected to correspond to less developed disease, in accordance

Table 1. Stochastic model parameters

Parameter Meaning Value Ref.

L No. of voxels per side 80 —
∆x Voxel side length (mm) 1 (62)
∆t Time-step length (h) 24 —
K Carrying capacity per voxel (cells) 2 · 105 (63)
Nt Threshold cell number 0.2 · K
N0 Initial population (cells) 1 —
Vend Maximum reachable tumor volume (cm3) 50 (breast)

120 (lung) (64)
Vdiag Tumor volume at diagnosis (cm3) 0.3 to 5 (breast) (65)

0.2 to 15 (lung) (66)
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Table 2. Basal rates and mutation weights

Processes Proliferation Migration Death Mutation

Breast basal rates (d−1) 0.0133 to 0.04 0.02 to 0.0303 0.01 to 0.02 0.01 to 0.02
TP53/PIK3CA (%) 20 to 40 25 to 45 (−30) to (−10) 25 to 40
Lung basal rates (d−1) 0.04 to 0.2 0.03 to 0.2 0.03 to 0.1205 0.03 to 0.1205
TP53/KRAS (%) 20 to 40 25 to 45 (−30) to (−10) 25 to 40

with the previous theoretical framework. In contrast, the cases
shown in Fig. 3 C and J with SUVmax displaced in relation to the
centroid would correspond to tumors with a poorer prognosis.

The histograms in Fig. 3 D–G and K–N depict the distributions
of MTV, TLG, SUVmax, and NHOC for both histologies. It is
noteworthy that the NHOC has a more regular distribution than
the other PET-based measures, with definite values between 0
and 1 and a centered mean (breast cancer, 0.51± 0.18, median
0.50; NSCLC, 0.43± 0.2, median 0.39). It is clear from Fig. 3
G and N that at the time of diagnosis the point of maximum
uptake is typically located away from the geometrical center of
the tumor. To inspect the relationships between the PET vari-
ables, we calculated a correlation matrix analysis (SI Appendix,
Fig. S1). The results show that NHOC does not strongly correlate
with the conventional measures and can therefore be considered
as an independent metric.

The classical measures (MTV, TLG, SUVmax) are known to be
prognostic biomarkers in breast cancer and NSCLC (22, 23). For
these variables we performed Kaplan–Meier analyses on over-
all survival (OS) and disease-free survival (DFS) (SI Appendix,
Figs. S3 and S4). All of the variables had prognostic value in the
breast cancer cohort, but only MTV returned significant results
(P value < 0.05) in the NSCLC cohort.

We then tested the prognostic value of NHOC by Kaplan–
Meier analyses with OS and DFS as endpoints (Materials and
Methods). Results for the best splitting thresholds are shown
in Fig. 4. For the breast cancer cohort, NHOC showed robust
results in terms of OS, with a best splitting threshold in both
OS and DFS of NHOC = 0.499 (Fig. 4 A and C). Interestingly
for OS, the most relevant metric, the C index, reached an out-
standing value of 1 (for DFS it was 0.899). Thus, no patients with
tumors having their SUVmax closer than half the radius (n = 30)
died from the disease. In NSCLC, NHOC separated the patients
well, and the best splitting threshold, NHOC = 0.64, led to a
C index of 0.875 for OS. The separation in median OS between
groups was 57.33 mo, while in DFS it was 36.62 mo. Therefore,
patients for whom the 18F-FDG hotspot displays an increasing
shift from the tumor centroid are associated to a worst outcome.

To determine whether the prognostic value of NHOC might
be related to possible necrotic regions, we evaluated the presence
of hypometabolic voxels inside the delineated tumor, i.e., those
situated inside the tumor that have a lower SUV value than the
segmentation threshold. We found that these regions are present
only in 7 of the 61 patients of our breast cancer cohort and in
13 of the 161 patients of our NSCLC cohort. Moreover, tumors
where hypometabolic voxels are detected account on average

Fig. 2. Hybrid stochastic mesoscale model shows that competition among progressively more aggressive phenotypes is pushed to the edge. (A) Three-
dimensional volume renderings at different time frames (from left to right: 78, 85, and 92% of simulation) of a simulation of breast cancer growth depicting
clonal populations within the tumor. Color of cell populations ranges from green (less aggressive) to red (more aggressive). Rates are proliferation 0.0315
d−1, death 0.0157 d−1, mutation 0.0160 d−1, and migration 0.0235 d−1. (B) Central section for the same simulation and time frames as in A showing the
most abundant clonal population per voxel. (C) Central section of tumor activity for the same time frames as in A. (D and E) HOC progression for every
simulation of breast cancer (D) and NSCLC (E). (F and G) Longitudinal NHOC dynamics for simulations of breast cancer (F) and NSCLC (G) growth, with
individual runs colored in reddish orange and all-simulation averaged NHOC in blue; crosses depict the time points at which each simulation ended.
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Fig. 3. Analysis of NHOC in 18F-FDG PET images reveals well-behaved distributions with prognostic potential. (A and H) Examples of PET images for breast
cancer (A) and NSCLC (H) patients in our dataset. (B, C, I, and J) Two-dimensional slices from patients with small (B and I) and large (C and J) NHOC values for
breast cancer (B and C) and NSCLC (I and J) patients. The centroid of each segmented lesion and the voxel of SUVmax are marked with a white cross and a
green dot, respectively. (Scale bars, 1 cm.) (D–G and K–N) Histograms showing the distributions of metabolic tumor volume (D and K), total lesion glycolysis
(E and L), SUVmax (F and M), and NHOC (G and N) for breast cancer (D–G) and NSCLC (K–N) patients in our datasets.

for only 1.63% of the total voxels in the breast cancer cohort
and 2.68% of the voxels in the NSCLC cohort. Consequently,
in our cohorts, the NHOC significance is not associated to the
occurrence of necrotic regions assessed by the manifestation of
hypometabolic voxels in the images.

The presence of lymph node metastases is a strong predictor
of outcome in breast and lung cancers, with nodal metastases
having negative prognostic significance. We evaluated whether
there was a significant difference in the NHOC value for the
group of patients which showed nodal metastases on diagno-
sis and those who did not (Mann–Whitney test; SI Appendix,
Fig. S9). The P values were 0.4683 for the breast cancer dataset
and 0.1071 for the NSCLC, thus discarding any significant dif-
ference across groups and indicating that the information car-
ried by NHOC is independent of the existence of lymph node
metastases.

These results show the strength of NHOC as a prognostic
biomarker in comparison with the classical metrics. For OS in the
breast cancer cohort, only MTV approached the performance of
NHOC; however, the C index for NHOC (C index = 1) outper-
formed the result for MTV (C index = 0.875). For DFS, none
of the classical variables showed nonisolated thresholds leading
to a statistically significant association between subgroups. In
the lung cancer cohort, the NHOC metric outperformed, once

again, the prognostic value of the classical variables. Regarding
OS, there were ranges of thresholds of MTV, TLG, and SUVmax
leading to statistically significant results with best C indexes of
0.736 (MTV), 0.682 (TLG), and 0.658 (SUVmax) still substan-
tially lower than the value obtained for NHOC (0.875). Results
for DFS were again similar, with only MTV and TLG achieving
significance, with best values of 0.638 (MTV) and 0.607 (TLG),
but still underperforming NHOC, with a C index of 0.651.

Discussion and Conclusion
Heterogeneity is one of the hallmarks of tumor malignancy (1,
2). Many mathematical models have been constructed account-
ing for different aspects of the development of heterogeneity
through evolutionary dynamical processes in a number of can-
cer types (31–33). We did not intend here to develop a universal
mathematical model to describe every aspect of tumor growth
progression, but rather to focus on understanding the basic
dynamics of the hotspot of metabolic activity, due to the poten-
tial applicability of the results. Different levels of complexity
were considered in each of the two complementary models con-
structed, and both led to the same conclusions: 1) Tumors would
evolve toward higher proliferation rate values, and 2) maximum
metabolic activity would move toward the tumor edge as the
tumor evolves with time.
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Fig. 4. Kaplan–Meier curves obtained for best splitting thresholds corre-
sponding to the NHOC metric. (A) Overall survival in breast cancer cohort.
(B) Overall survival in NSCLC cohort. (C) Disease-free survival in breast cancer
cohort. (D) Disease-free survival in NSCLC cohort.

It is interesting to note that conclusion 2 (but not conclusion 1)
would have been arrived at through the use of a “classical” local
Fisher–Kolmogorov model (34). In the context of that math-
ematical model, proliferation is inhibited in areas of high cell
density and higher proliferation areas would switch from the
tumor core to the periphery, as predicted also by the nonlocal
model Eq. 1. This is, therefore, a robust finding of the study, and
it is likely to be anticipated by other mathematical approaches.
Conclusion 1 does not come as a surprise, since the maximum
metabolic activity obtained from PET images (e.g., as measured
by the SUVmax) has been known to contain prognostic informa-
tion in different cancer types (22, 23). Thus, the fact that SUVmax
possesses a prognostic value in the clinical setting is compati-
ble with the results of our models, where the activity grows with
time over the tumor’s natural history until a maximum value is
reached.

Many studies have correlated either classical PET-derived
metrics such as MTV and TLG (35, 36) or complex spatial fea-
tures of the distribution of SUV values (37) with the outcome of
the disease. However, no study has analyzed the prognostic value
of metrics derived from the location of the highest metabolic
activity. The fact that this simple biomarker has a high prognostic
value is remarkable and probably related to the robustness of the
biological assumptions behind the mathematical models used to
substantiate it. In fact, it is natural to expect that the presence
of more aggressive glucose-avid cells, that might be unable to
progress when located in saturated areas near the center of the
tumor, may be a risk factor when placed in regions with much
more capacity to settle and invade.

In our study we chose to take the voxel bearing the SUVmax as
the location of maximum metabolic activity to compute NHOC.
We could also have used SUVpeak (the maximum SUV appearing
in the distribution when all of the voxels are averaged with their
26 neighbors), which is thought to be more stable and to better
define an extended region of high uptake (38). However, SUVmax
is often placed in the area defined by SUVpeak, thus leading to
equivalent metrics (39). SUVmax is also easier to identify visually

and is therefore easier to use in clinical practice, besides being
the simplest option.

The fact that NHOC provides an accessible and powerful
prognostic metric could be extended in different ways. First, it
would be valuable to look at whether changes in this biomarker
might provide a robust indication of an increase in malignancy
for initially indolent tumors (e.g., benign lung nodules, low-grade
gliomas, etc.) undergoing a malignant transformation. Second,
an intriguing open question would be to determine whether
the rate at which NHOC changes during patient follow-up cor-
relates with the occurrence and fixation of specific mutations.
Finally, it may be the case that changes with time of this metric,
after different treatment modalities, could help in assessing the
response through sequential PET studies as a measure of how
much NHOC is reduced.

Hotspots in staging 18F-FDG PET–computed tomography
(PET/CT) have previously been reported as preferential sites
for relapse after chemoradiotherapy in several types of cancer,
including NSCLC (40, 41). Some authors have found that these
hotspots colocalize with hypoxic regions as inferred from HIF-1α
tumor immunostaining (42) and are thus very relevant in the con-
text of radioresistance (40, 43, 44). Furthermore, these hotspots
have also been linked to the occurrence of somatic mutations in
lung cancer (45, 46) similarly to what is described in this work.
Although further research is needed, this rationale has led some
authors to assert that patients may benefit from hotspot-based
dose escalation (43, 47). The voxel of SUVmax, hence, has a pre-
eminent significance both in prognosis and in therapy and, as it
is now shown here, its relative position has a direct bearing on its
relevance. In addition to NHOC tracking throughout the disease,
NHOC estimation in hypoxia-specific PET imaging, employing
other radiotracers such as fluoromisonidazole (18F-MISO) or flu-
oroazomycin arabinoside (18F-FAZA), could provide valuable
information complementary to that of 18F-FDG PET/CT images.

Mathematical and computational models are progressively
gaining their place among the tools that are used to study
cancer (48). In silico models based on evolutionary dynamics
may capture relevant aspects of tumor growth and have proved
helpful in understanding tumor clonal heterogeneity, one of
the main hallmarks of cancer (49). Mechanistic mathematical
models of different levels of complexity have been shown to pro-
vide biomarkers of clinical significance (24, 50–57). This type
of approach provides a rational alternative to radiomic and
deep-learning studies, where a mechanistic explanation is often
missing. The study described in this paper falls into the former
category, demonstrating that an informed understanding of the
system’s emergent properties can shed light on the deeper roots
of its working.

It is worth mentioning that our mathematical approach,
beyond its fundamental interest, has led to the proposal of a
simple metric with high prognostic value that can be obtained
from 18F-FDG PET studies. The NHOC biomarker was able
to separate patients with breast cancer and non–small-cell lung
cancer into two groups with significantly different survival (both
overall and disease-free) and proved to be more powerful than
traditional 18F-FDG PET/CT biomarkers (MTV, TLG, SUVmax)
currently used in clinics. This demonstrated that the geomet-
ric location of the maximum metabolic activity, and not only its
value, contains information of clinical significance: Tumors in
which the hotspot is located farther from the center are found
to have a worst prognosis.

This study opens many further avenues for research. The first
one is the search for other biomarker definitions accounting
for the location of highest metabolic activity. Second, it would
be interesting to test our findings in other tumor histologies,
such as lymphoma or melanoma (58, 59). PET is a main-
stream technique, increasingly employed in clinics and in many
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imaging studies for which a broad spectrum of tumor histolo-
gies is available. Thus, the applicability of NHOC to other cancer
types would be an interesting extension of our work.

In conclusion, by using two mathematical models incorporat-
ing evolutionary dynamics, we have shown that the maximum
metabolic activity is expected to increase in magnitude and
to move toward the tumor boundary as human solid tumors
progress. On the basis of the theoretical predictions we have
defined a metric, the NHOC, representing the normalized dis-
tance from the point of maximum activity to the tumor centroid
and validated it as a prognostic biomarker in lung and breast
cancer patients using PET imaging datasets. The biomarker
NHOC outperformed classical PET-based biomarkers such as
TLG, MTV, and SUVmax and provides a notable example of
mathematically grounded research with applicability in oncology.

Materials and Methods
Patients. Our study was based on data from two different studies, both
of them approved by the Institutional Review Board (IRB) of Ciudad Real
University General Hospital (HGUCR). Breast cancer patients were partic-
ipants of a multicenter prospective study, and written informed consent
was obtained from all patients. The inclusion criteria were 1) newly diag-
nosed locally advanced breast cancer with clinical indication of neoadjuvant
chemotherapy, 2) lesion uptake higher than background (i.e., those having
a SUVmax larger than twice the background activity readings), 3) absence
of distant metastases confirmed by other methods prior to the request of
PET/CT for staging, and 4) breast lesion size of at least 2 cm. Sixty-one
patients (18% lobular carcinoma, 82% ductal carcinomas, 100% women,
age rank 25 to 80 y, median 50 y) were included in this dataset. The
TNM data were 54% T2, 18% T3, 28% T4; 28% N0, 55% N1, 6% N2,
11% N3; 100% M0.

One hundred seventy-five patients (153 men, 22 women, age rank 41 to
84 y, median 65 y) were included in the study from a dataset of lung cancer
patients who received surgery in the period June 2007 to December 2016.
Histologies were 63 squamous-cell carcinomas and 112 adenocarcinomas.
Staging information was 69 stage I, 70 stage II, 33 stage III, 3 stage IV. The
N staging was 107 patients N0, 46 N1, and 22 N2. All patients had M0. PET
protocol and machine were as in subgroup 1. The inclusion criterion was
established that minimal lesion size should be greater than 2.0 cm. From those
initial patients, 14 were removed due to the unavailability of survival data.

The PET machine was a dedicated whole-body PET/CT scanner (Discov-
ery SDTE-16s; GE Medical Systems) in three-dimensional (3D) mode. Image
acquisition began 60 min after intravenous administration of approximately
370 MBq (10 mCi) of 18F-FDG; the images obtained had a voxel size of 5.47×
5.47× 3.27 mm3, with no gap between slices, and a matrix size of 128× 128.
The inclusion criteria considered only newly diagnosed patients with avail-
ability of pretreatment PET/CT examination and a lesion uptake higher than
background (SUVmax larger than twice the background), absence of distant
metastases, and a lesion size of at least 2 cm.

The 18F-FDG PET Image Analysis and Computation of the
Relevant Metrics
PET images in DICOM format were loaded into MATLAB
for the image analysis. In each image, the tumor was manually
selected and subsequently delineated in 3D by an automatic algo-
rithm. The result of the delineation is a 3D matrix with the SUV
values (S ) of the N voxels of the tumor. Occasionally, there
might be N ′ hypometabolic voxels enclosed by the active ones,
which could be assigned to necrotic regions; these are used here
only for geometric considerations. For all delineated tumors in
PET images, we evaluated the following metrics:

MTV, i.e., volume of the delineated tumor, computed as the
number N of selected voxels multiplied by the volume of one
voxel VV :

MTV =N ×VV . [2]

TLG, calculated as the sum of the SUV value multiplied by
the volume of the voxel for all of the N voxels in the tumor:

TLG =
∑N

i=1 Si ×VV . [3]

SUVmax, maximum value of SUV in the tumor:

SUVmax = max{Si}. [4]

We refer to the SUVmax voxel position by its coordinates xsm,
ysm, zsm and use it as a location for the 18F-FDG hotspot.

MSR, the radius of a hypothetical sphere having the same
volume as the MTV and serving as a linear surrogate of
volume:

MSR =

(
3

4π
MTV

)1/3
. [5]

Centroid: As a reference point for the center of the tumor
that is independent of the observer and computable for any
delineated tumor, we use the geometrical centroid of the 3D
shape defined by the segmented tumor and all its interior
points, including the N ′ hypometabolic ones. Its coordinates
are computed by the mathematical definition

xc =
1

N +N ′

N+N ′∑
i=1

xi , [6a]

yc =
1

N +N ′

N+N ′∑
i=1

yi , [6b]

zc =
1

N +N ′

N+N ′∑
i=1

zi . [6c]

HOC, distance from 18F-FDG hotspot (voxel with SUVmax) to
tumor centroid measured as the Euclidean distance between
both points:

HOC =

√
(xsm− xc)

2 + (ysm− yc)
2 + (zsm− zc)

2. [7]

NHOC, normalized distance from 18F-FDG hotspot to tumor
centroid. To make the HOC size independent, we normalize
it by the MSR as a linear measure of volume. Consequently,
we get a metric for the shift of the 18F-FDG hotspot that is
comparable along all tumors:

NHOC =
HOC

MSR
. [8]

Even though all of the images were taken with PET/CT coreg-
istration, only data from positron emission tomography were
used in this work.

Kaplan–Meier Statistics. We performed Kaplan–Meier analyses
over these two cohorts of patients, using the log-rank and Bres-
low tests to assess the significance of the results. These methods
compare two populations separated in terms of one parameter
and study their statistical differences in survival. Specifically, OS
and DFS Kaplan–Meier analyses were performed. A two-tailed
significance level with P value lower than 0.05 was applied. The
hazard ratio (HR) and its adjusted 95% confidence interval (CI)
were also computed for each threshold using Cox proportional
hazards regression analysis.
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Splitting Thresholds. For each variable, we searched for every
value splitting the sample into two different subgroups, satisfy-
ing the condition that none of them be more than five times
larger than the other. We then tested each of them as split-
ting thresholds through Kaplan–Meier analyses, obtaining the
significance results shown in SI Appendix, Figs. S5–S8. The best
splitting threshold was chosen as the nonisolated significant value
giving the lowest P value in both log-rank and Breslow tests, as
described in ref. 52.

Harrell’s C Index. To assess the accuracy of prognostic models,
Harrell’s concordance index score was also computed (60). This
method compares the survival of two populations of patients
(best prognosis versus worst prognosis) by studying all possi-
ble combinations of individuals belonging to different groups.
Then, the percentage of right guesses is the reported result.
Concordance indexes were computed using the noncensored
sample and ranged from 0 to 1, with 1 indicating a perfect
model (a purely random guess would give a concordance index
of 0.5).

Variable Correlations. Spearman correlation coefficients were
used to assess the dependencies between pairs of variables.
We considered significant correlation coefficients above 0.7 or
below −0.7 as strong (direct or inverse, respectively) correlations
between variables. In this way we were able to exclude possible
confounding effects in our analysis.

Statistical Software. SPSS (v. 22.0.00), MATLAB (R2018b; The
MathWorks, Inc.), and R (3.6.3) software were used for all
statistical analyses.

Nonlocal Fisher–Kolmogorov Model and Simulations. The
migration–proliferation integro-differential Eq. 1 in radial
coordinates was solved numerically using the method of lines
(61) combined with Newton–Cotes integration formulas to
deal with the nonlocal term. In the simulations displayed
in Fig. 1, the computational domain consisted of a radial
variable r ∈ [0,Rmax], where Rmax = 7 cm was the maximum
radius, and the proliferation rate ρ∈ [0, ρm], where the max-
imum proliferation rate was ρm = 0.06 d−1. The number of
nodes in the discretized r -ρ mesh was 350× 180. Additional
parameters were Dc = 3.5 · 10−4 cm2/d, Dρ = 1.3 · 10−8 d−3,
µ= 4 · 10−3 d−1, and K = 8 · 107 cells/cm3. The initial condition
consisted of a highly localized lesion with a radius of 1 mm

containing 105 tumor cells and having a mean proliferation rate
ρ0 = 1.7 · 10−2 d−1 and standard deviation σ0 = 3 · 10−3 d−1.

The general expression for the proliferation density is

M(x, t) =

∫ ρm

0

(ρ−µ)

(
1− 1

K

∫ ρm

0

u(x, ρ′, t) dρ′
)
u(x, ρ, t) dρ

[9]

and was used to compute the plots shown in Fig. 1B assuming
spherical symmetry.

In Fig. 1C, the mean metabolic radius was defined as

Rmet(t) =

∫ Rmax

0
M(r , t) r3dr∫ Rmax

0
M(r , t) r2dr

, [10]

while the average proliferation rate was determined via

ρa(t) =

∫ ρm
0

∫ Rmax

0
ρ u(r , ρ, t) r2dr dρ∫ ρm

0

∫ Rmax

0
u(r , ρ, t) r2dr dρ

. [11]

In Fig. 1D, the distance from the tumor centroid to the point of
maximum proliferation (HOC) was calculated at each time step
via expression 9. The NHOC was computed by means of the ratio
NHOC(t) = HOC(t)/Rmet(t).

Data Availability. All study data are included in this article and/or SI
Appendix. The data extracted by PET imaging processing of all of the
patients are accessible in our group’s webpage: http://matematicas.uclm.es/
molab/EvolutionaryDynamicsAtTheTumorEdge DATA.xlsx.
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51. J. Pérez-Beteta et al., Tumor surface regularity at MR imaging predicts survival
and response to surgery in patients with glioblastoma. Radiology 288, 218–225
(2018).
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